Indian Statistical Institute B.Math. (Hons.) III Year First Semester Exam 2006-07 Introduction to Differential Geometry

Time: 3 hrs

Date:27-11-06 Instructor: Maneesh Thakur

Attempt all questions, they carry equal marks. You may use any result proved in the course.

1. (a) Let γ be a regular curve (not necessarily unit speed) on a surface patch σ . Prove that the normal curvature of γ is given by

$$\mathcal{K}_n = \frac{L\dot{u}^2 + 2M\dot{u}\dot{v} + N\dot{v}^2}{E\dot{u}^2 + 2F\dot{u}\dot{v} + G\dot{v}^2}$$

where $E du^2 + 2F dudv + G dv^2$ and $L du^2 + 2M dudv + N dv^2$ are the first and second fundamental forms of σ respectively.

- (b) Let γ be a curve on the unit sphere S^2 . Compute the normal curvature of γ .
- 2. Let S be a compact surface in \mathbb{R}^3 whose Gaussian curvature K is positive everywhere. Show that S is diffeomorphic to a sphere. Is the converse true?
- 3. Let σ be a surface patch whose Gaussian curvature $K \leq -1$ everywhere. Let γ be a geodesic *n*-gon contained in σ . Show that $n \geq 3$ and when n = 3, the area enclosed by γ is at most π .
- 4. Let S be the ellipsoid

$$\frac{x^2+y^2}{a^2}+\frac{z^2}{b^2}=1, \quad a,b>0.$$

Prove that $\iint_S K \, dA = 4\pi$, where K denotes the Gaussian curvature of S.

5. Let a triangulation of a compact surface S in \mathbb{R}^3 have V vertices, E edges and F triangles. Let χ be the Euler characteristic of S. Show that

$$3F = 2E, E = 3(V - \chi)$$
 and
 $V \ge \frac{1}{2}(7 + \sqrt{49 - 24\chi}).$

6. A triangulation of S^2 has F triangles and r triangles meet at each vertex. Show that $V = \frac{3F}{r}$. Compute E and show that $\frac{6}{r} - \frac{4}{F} = 1$. Here V, E are the number of vertices and edges respectively, in the triangulation.